Quick Tutorial
1. Include the C/C++ headers
#include <assert.h>
2. Configure optional HFSM2 functionality using
#define
s
(in this case we're using Plans to make transition cycle more straightforward):#define HFSM2_ENABLE_PLANS
#include <hfsm2/machine.hpp>
4. Define interface class between the state machine and its host
(also ok to use the host object itself):
struct Context {
bool powerOn;
};
5. (Optional) Define type config:
using Config = hfsm2::Config::ContextT<Context>;
6. (Optional, recommended) Define
hfsm2::Machine
for convenience:using M = hfsm2::MachineT<Config>;
7. Declare state machine structure.
States need to be forward declared, e.g. with a magic macro:
#define S(s) struct s
using FSM = M::PeerRoot<
S(Off), // initial top-level state
M::Composite<S(On), // sub-machine region with a head state (On) and and 3 sub-states
S(Red), // initial sub-state of the region
S(Yellow),
S(Green)
>,
S(Done)
>;
#undef S
8. (Optional) While HFSM2 transitions aren't event-based, events can be used to have FSM react to external stimuli:
struct Event {};
9. Define states and override required state methods:
struct Off
: FSM::State
{
void entryGuard(FullControl& control) { // called before state activation, use to re-route transitions
if (control.context().powerOn) // access shared data
control.changeTo<On>(); // initiate a transition into 'On' region
}
};
struct On
: FSM::State
{
void enter(PlanControl& control) { // called on state activation
auto plan = control.plan(); // access the plan for the region
plan.change<Red, Yellow>(); // sequence plan steps, executed when the previous state succeeds
plan.change<Yellow, Green>();
plan.change<Green, Yellow>();
plan.change<Yellow, Red>();
}
void exit(PlanControl& /*control*/) {} // called on state deactivation
void planSucceeded(FullControl& control) { // called on the successful completion of all plan steps
control.changeTo<Done>();
}
void planFailed(FullControl& /*control*/) {} // called if any of the plan steps fails
};
struct Red
: FSM::State
{
void update(FullControl& control) { // called on periodic state machine updates
control.succeed(); // notify successful completion of the plan step
} // plan will advance to the 'Yellow' state
};
struct Yellow
: FSM::State
{
void update(FullControl& control) {
control.succeed(); // plan will advance to the 'Green' state on the first entry
// and 'Red' state on the second one
}
};
struct Green
: FSM::State
{
void react(const Event&, FullControl& control) { // called on external events
control.succeed(); // advance to the next plan step
}
};
struct Done
: FSM::State
{};
10. Write the client code to use your new state machine:
int main() {
11. Create context and state machine instances:
Context context;
context.powerOn = true;
FSM::Instance fsm{context};
assert(fsm.isActive<On>()); // activated by Off::entryGuard()
assert(fsm.isActive<Red>()); // On's initial sub-state
12. Call
FSM::update()
for the FSM to process transitions: fsm.update();
assert(fsm.isActive<Yellow>()); // 1st setp of On's plan
fsm.update();
assert(fsm.isActive<Green>()); // 2nd setp of On's plan
13. (Optional) Event reactions also cause transitions to be processed:
fsm.react(Event{});
assert(fsm.isActive<Yellow>()); // 3rd setp of On's plan
14. Keep updating the FSM for as long as necessary:
fsm.update();
assert(fsm.isActive<Red>()); // 4th setp of On's plan
fsm.update();
assert(fsm.isActive<Done>()); // activated by On::planSucceeded()
return 0;
}
Last modified 2yr ago